Exploiting structure and utilizing agent-centric rewards to promote coordination in large multiagent systems
نویسندگان
چکیده
A goal within the field of multiagent systems is to achieve scaling to large systems involving hundreds or thousands of agents. In such systems the communication requirements for agents as well as the individual agents’ ability to make decisions both play critical roles in performance. We take an incremental step towards improving scalability in such systems by introducing a novel algorithm that conglomerates three well-known existing techniques to address both agent communication requirements as well as decision making within large multiagent systems. In particular, we couple a Factored-Action Factored Markov Decision Process (FA-FMDP) framework which exploits problem structure and establishes localized rewards for agents (reducing communication requirements) with reinforcement learning using agent-centric difference rewards which addresses agent decision making and promotes coordination by addressing the structural credit assignment problem. We demonstrate our algorithms performance compared to two other popular reward techniques (global, local) with up to 10,000 agents.
منابع مشابه
Exploiting organisational information for service coordination in multiagent systems
Service-Oriented Computing and Agent Technology are nowadays two of the most active research fields in distributed and open systems. However, when trying to bridge the two worlds, it becomes apparent that the interaction-centric approach of multiagent systems may affect the way services are modelled and enacted, and vice versa. We claim that organisational models that underlie multiagent intera...
متن کاملCombining reward shaping and hierarchies for scaling to large multiagent systems
Coordinating the actions of agents in multiagent systems presents a challenging problem, especially as the size of the system is increased and predicting the agent interactions becomes difficult. Many approaches to improving coordination within multiagent systems have been developed including organizational structures, shaped rewards, coordination graphs, heuristic methods, and learning automat...
متن کاملCounterfactual Exploration for Improving Multiagent Learning
In any single agent system, exploration is a critical component of learning. It ensures that all possible actions receive some degree of attention, allowing an agent to converge to good policies. The same concept has been adopted by multiagent learning systems. However, there is a fundamentally different dynamic in multiagent learning: each agent operates in a non-stationary environment, as a d...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملCLEAN rewards for improving multiagent coordination in the presence of exploration
In cooperative multiagent systems, coordinating the jointactions of agents is difficult. One of the fundamental difficulties in such multiagent systems is the slow learning process where an agent may not only need to learn how to behave in a complex environment, but may also need to account for the actions of the other learning agents. Here, the inability of agents to distinguish the true envir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013